BMPO (Spin trapping reagent) 自旋捕獲劑
產(chǎn)品編號 | 產(chǎn)品名稱 | 包裝規(guī)格 | 價格 |
NBS5869-5mg | BMPO (Spin trapping reagent) 自旋捕獲劑 | 5mg | 2058 |
NBS5869-10mg | BMPO (Spin trapping reagent) 自旋捕獲劑 | 10mg | 3108 |
NBS5869-50mg | BMPO (Spin trapping reagent) 自旋捕獲劑 | 50mg | 10295 |
產(chǎn)品簡介:
BMPO(5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide)是一種新型高效且高穩(wěn)定型的硝酮自旋捕獲劑(Nitrone Spin Trapping Reagent),由美國威斯康星醫(yī)學院Kalyanaraman教授的實驗室團隊開發(fā),非常適合用于特異性檢測和鑒定體內(nèi)外形成的硫自由基、羥基自由基(?OH)和超氧陰離子自由基(?O2-),通過形成用電子順磁共振波譜(EPR)可區(qū)分的加合物來測定。
BMPO具有以下特點:
①特異性高,半衰期長:其它的硝酮自旋捕獲劑比如:DMPO,難以輕易區(qū)分超氧陰離子和羥基自由基,因產(chǎn)生的DMPO-超氧加合物(半衰期t?=45s)瞬間衰減產(chǎn)生DMPO-羥基加合物。與最近開發(fā)的自旋捕獲劑:DEPMPO和EMPO類似,BMPO-超氧加合物不會衰減生成羥基加合物,但是,BMPO-超氧加合物的半衰期最長(t?=23min)。
②產(chǎn)品穩(wěn)定性高:DEPMPO和EMPO是液體自旋捕獲劑,通常被硝基氧雜質污染,且效期有限。BMPO是固體的環(huán)形硝酮,通過結晶以高度純化的狀態(tài)提供,能夠保存更長的周期,且不用擔心降解。
③更高的信噪比:BMPO衍生的加合物在各自的EPR光譜中具有更高的信噪比,使其更適合用于檢測細胞懸浮液中的亞硫酸、羥基和甲基自由基。
④高水溶性:水溶性好,更利于水相體系自由基的研究,尤其是生物體系的自由基研究。
產(chǎn)品特性:
1) CAS NO:387334-31-8
2) 化學名:3,4-dihydro-2-methyl-1,1-dimethylethyl ester-2H-pyrrole-2-carboxylic acid-1-oxide
3) 同義名:5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide; BocMPO;
4) 分子式:C10H17NO3
5) 分子量:199.2
6) 純度:≥98%
7) 外觀:結晶或結晶性粉末
8) 溶解性:溶于水、PBS(pH 7.2, 10mg/ml)、DMSO(25mg/ml)、無水乙醇(25mg/ml)
保存條件:
-20oC干燥保存,2年有效。
注意事項:
1. 為了您的安全和健康,請穿實驗服并戴一次性手套操作。
應用示例(僅作參考):
1.文獻來源:Mitchell DG, Rosen GM, Tseitlin M, Symmes B, Eaton SS, Eaton GR. Use of rapid-scan EPR to improve detection sensitivity for spin-trapped radicals. Biophys J. 2013 Jul 16;105(2):338-42. doi: 10.1016/j.bpj.2013.06.005. PMID: 23870255; PMCID: PMC3714875.
①黃嘌呤-黃嘌呤氧化酶體系內(nèi)超氧陰離子(O2??)生成的測定:Typically, xanthine oxidase (0.04 U/mL) was added to pH ~7.4 sodium phosphate buffer (50 mM) containing DTPA (1 mM) and hypoxanthine (0.5–400 μM, final concentration) to achieve rates of O2?? formation that ranged from 0.1 to 6.0 μM/min. We estimated the superoxide formation rate by monitoring the SOD-inhibitable reduction of ferricytochrome c (80 μM) at room temperature. Spin trapping was performed by addition of 100 mM BMPO in pH ~7.4 phosphate-buffered saline (PBS; 50 mM) containing 1 mM DTPA to the solution of hypoxanthine and xanthine oxidase to achieve a final BMPO concentration of 50 mM in the reaction mixture. EPR spectra were recorded 10 min after mixing reagents. The half-life of BMPO-OOH at ambient temperature is reported to be ~23 min. Solutions for control experiments contained SOD (30 U/mL).
Figure 2 Comparison of CW and rapid-scan spectra of BMPO-OOH in solution with a O2?? production rate of 0.1μM/min, recorded 10 min after mixing reagents. The O2?? was produced by a hypoxanthine/xanthine oxidase mixture. The concentration of BMPO-OOH is ~0.3μM. (A) CW spectrum obtained with 55 G sweep width, 0.75 G modulation amplitude, single 30 s scan, 15 ms conversion time, 10 ms time constant, and 20 mW (B1 = 170 mG) microwave power. (B) Deconvolved rapid-scan spectrum obtained with 55 G scan width, 51 kHz scan frequency, and 53 mW (B1 = 250 mG) microwave power. Segments consisting of 12 sinusoidal cycles were averaged 100 k times, with a total data acquisition time of ~30 s.
2.文獻來源:Wang, Z., Zhang, Y., Ju, E.et al. Biomimetic nanoflowers by self-assembly of nanozymes to induce intracellular oxidative damage against hypoxic tumors.Nat Commun 9,3334 (2018). https://doi.org/10.1038/s41467-018-05798-x
①缺氧下的ESR測定(O2??,?OH):For O2?? detection, the pre-deoxidized PBS (pH 5.0, 25?mM) contained 25?mM BMPO, 20?μg?mL?1 MnO2@PtCo nanoflowers, 100?μM H2O2, 50% DMSO was prepared. After incubation of 5?min, ESR spectra were recorded. For ?OH detection, the pre-deoxidized PBS (pH 5.0, 25?mM) contained 25?mM BMPO, 20?μg?mL?1 MnO2@PtCo nanoflowers, 100?μM H2O2, 0.25?U?mL?1 SOD was prepared. After incubation of 5?min, ESR spectra were recorded. The following instrument settings were used for collecting ESR spectra: 1?G field modulation, 100?G scan range, and 20?mW microwave power.
Fig f ESR spectra of BMPO/?OOH adducts from different groups in the hypoxic H2O2 (100?μM) condition upon addition of DMSO.g ESR spectra of BMPO/?OH adducts were collected from different samples in the hypoxic H2O2 (100?μM) condition upon addition of SOD. Data were presented as mean?±?s.d. (n=?5).